Different Ways of Thinking for Decision Making
Convergent Thinking and Divergent Thinking

Different Ways of Thinking for Decision Making

  • Post category:Creativity
  • Reading time:7 mins read

Different Ways of Thinking for Decision Making

Convergent Thinking and Divergent Thinking

Introduction:

What are different algorithms exist for problem-solving? Or in other words, what are different ways of thinking for decision making? The way of thinking is directly associate with creativity. Let’s see.

In our school, we are unknowingly trained to think that every question has only one answer. Also, our examination patterns support the one answer system. ‘Answer in one sentence. Fill in the blanks. Answer in one word. Match the pairs.’ These types of questions make our mindset that every question or problem has one and the only one right solution. Now in Universities also the final examination is having MCQs (Multiple Choice Questions). In that, The examiner gives Four choices. And out of that only one choice is the correct answer. Therefore, It is easy for Universities to conduct examinations ‘online’ by this system. But in real life, the problem has many solutions. The rules that apply in school are often completely different from those in the outside the world.

We are creatures of habit. My dear friends, we go to the office or school on the same route with the same vehicle at the same time every day. Usually, we wear the same type of clothes with the same type of shoes. We write emails, letters, and memos in the same pattern with the same vocabulary. Our thinking pattern is also the same. We do not try different styles. It is the left brain thinking, analytical, and critical. This is ‘Convergent thinking’.

Convergent Thinking:

Joy Paul Guilford coined the term ‘Convergent Thinking’. It is the ability to give the correct answers to the questions. There is no creativity. Solving MCQs does not require creativity.

The left brain is in action for convergent thinking. Convergent thinking narrows down a large number of ideas through the process of analyzing, criticizing, judging, eliminating, and selecting. If you want to evaluate the merits of an idea or want to see how well it holds up to scrutiny based on pre-established criteria, go for convergent thinking. We use convergent thinking to gain clarity, consider practical constraints, draw conclusions, determine the bottom-line, and select the best ideas.

Divergent Thinking:

Divergent thinking is a thought process or method used to generate creative ideas by exploring many possible solutions.

It involves moving away from the core subject in a spread of directions. In divergent thinking mode, we can generate all sorts of ideas that are not connected with the main problem. We stretch our imagination to generate many possibilities, including wild or strange ideas. It is opposite to convergent thinking, where we concentrate on one target and narrow down our options to arrive at one selected solution.

Example of the Divergent Thinking:

One very classic example of Divergent thinking is giving below. Some time ago I received a call from a colleague who asked if I would be the referee on the grading of an examination question. He was about to give a student a zero for his answer to a physics question, while the student claimed he should receive a perfect score and would if the system were not set up against the student:

The instructor and the student agreed to submit this to an impartial arbiter, and I was selected.

I went to my colleague’s office and read the examination question:

“Show how it is possible to determine the height of a tall building with the aid of a barometer.”

Different Approaches to the Problem Solving:

The student had answered: “Take a barometer to the top of the building, attach a long rope to it, lower the barometer to the street and then bring it up, measuring the length of the rope. The length of the rope is the height of the building.”

I pointed out that the student really had a strong case for full credit since he had answered the question completely and correctly. On the other hand, if full credit was given, it could well contribute to a high grade for the student in his physics course. A high grade is supposed to certify competence in physics, but the answer did not confirm this. I suggested that the student have another try at answering the question I was not surprised that my colleague agreed, but I was surprised that the student did.

I gave the student six minutes to answer the question with the warning that the answer should show some knowledge of physics. At the end of five minutes, he had not written anything. I asked if he wished to give up, but he said no. He had many answers to this problem; he was just thinking of the best one. I excused myself for interrupting him and asked him to please go on. In the next minute he dashed off his answer which read:

“Take the barometer to the top of the building and lean over the edge of the roof. Drop that barometer, timing its fall with a stopwatch. Then using the formula:

s=ut+1/2at2

calculate the height of the building.”

At this point I asked my colleague if he would give up. He conceded, and I gave the student almost full credit.

In leaving my colleague’s office, I recalled that the student had said he had many other answers to the problem, so I asked him what they were. “Oh yes,” said the student. “There are a great many ways of getting the height of a tall building with a barometer. For example, you could take the barometer out on a sunny day and measure the height of the barometer and the length of its shadow, and the length of the shadow of the building and by the use of a simple proportion, determine the height of the building.”

“Fine,” I asked. “And the others?”

“Yes,” said the student. “There is a very basic measurement method that you will like. In this method, you take the barometer and begin to walk up the stairs. As you climb the stairs, you mark off the length of the barometer along the wall. You then count the number of marks, and this will give you the height of the building in barometer units. A very direct method.”

“Of course, if you want a more sophisticated method, you can tie the barometer to the end of a string, swing it as a pendulum, and determine the value of `g’ at the street level and at the top of the building. From the difference of the two values of `g’ the height of the building can be calculated.”

Finally, he concluded, there are many other ways of solving the problem. “Probably the best,” he said, “is to take the barometer to the basement and knock on the superintendent’s door. When the superintendent answers, you speak to him as follows: “Mr. Superintendent, here I have a fine barometer. If you tell me the height of this building, I will give you this barometer.”

At this point I asked the student if he really did know the conventional answer to this question. He admitted that he did, said that he was fed up with high school and college instructors trying to teach him how to think, using the “scientific method,” and to explore the deep inner logic of the subject in a pedantic way, as is often done in the new mathematics, rather than teaching him the structure of the subject. With this in mind, he decided to revive scholasticism as an academic lark to challenge the Sputnik-panicked classrooms of America.

(Ref: https://jcdverha.home.xs4all.nl/scijokes/2_12.html)

we have a very disturbing tendency to see and gather only evidence that supports our existing beliefs and to reject or ignore evidence that conflicts with our beliefs.

Brilliant thinkers recognize that there are many different views of the world and that each is incomplete.

If you want to upload your thoughts on this article or ashokathoughts, click the link below:

GO TO ‘THINKER’S PLATFORM’…